N-tuples and Cartesian Products for N = 5
نویسنده
چکیده
This article deenes ordered n-tuples, projections and Cartesian products for n = 5. We prove many theorems concerning the basic properties of the n-tuples and Cartesian products that may be utilized in several further, more challenging applications. A few of these theorems are a strightforward consequence of the regularity axiom. The article originated as an upgrade of the article 3]. The articles 2], 5], 4], 1], and 3] provide the notation and terminology for this paper.
منابع مشابه
Sharply $(n-2)$-transitive Sets of Permutations
Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...
متن کاملMATH 436 Notes: Finitely generated Abelian groups
Definition 1.1 (Direct Products). Let {Gα}α∈I be a collection of groups indexed by an index set I. We may form the Cartesian product ∏ α∈I Gα. The elements of this Cartesian product can be denoted by tuples (aα)α∈I . We refer to the entry aα as the αth component of this tuple. We define a multiplication on this Cartesian product componentwise, i.e., (aα) ⋆ (bα) = (aα ⋆α bα) where ⋆α is the grou...
متن کاملTuples, Projections and Cartesian Products
The purpose of this article is to define projections of ordered pairs, and to introduce triples and quadruples, and their projections. The theorems in this paper may be roughly divided into two groups: theorems describing basic properties of introduced concepts and theorems related to the regularity, analogous to those proved for ordered pairs by Cz. Byliński [1]. Cartesian products of subsets ...
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1990